Juurimine ehk juurimistehe on tehe, mille abil antud astme ja astendaja kaudu leitakse astme alus:
$$\sqrt[n]{a^{n}}=a$$
\begin{align} \sqrt[2n]{a^{2n}}&=\left | a \right |\\ \\ \sqrt[2n+1]{a^{2n+1}}&=a\\ \\ \sqrt[n]{0}&=0,\; \textrm{kus}\; n\neq 0\\ \\ \sqrt[n]{1}&=1,\; \textrm{kus}\; n\neq 0\\ \end{align}
Võttes arvesse ülaltoodud juure omadusi, on:
\begin{align} \sqrt[n]{a \times b}&=\sqrt[n]{a} \times \sqrt[n]{b}\\ \\ \sqrt[n]{\frac {a}{b}}&=\frac {\sqrt[n]{a}}{\sqrt[n]{b}}\\ \\ \sqrt[m]{\sqrt[n]{a}}&=\sqrt[m \times n]{a}\\ \\ \sqrt[n]{a^{m}} &= a^{\frac{m}{n}}\\ \\ (\sqrt[n]{a})^{m} &= \sqrt[n]{a^{m}}\\ \\ \sqrt[n]{a^{m}} &= \sqrt[k \times n]{a^{k \times m}}\\ \end{align}